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Abstract

This paper concerns the efficient and precise determination of the Laypunov
exponent (and other statistical properties) of a product of random 2×2 matrices.
By considering the ensemble average of an infinite series of regular functions
and its iteration, we construct a transfer matrix, which is shown to be a trace
class operator in a Hilbert space given that the positiveness of the random
matrices is assumed. This fact gives a theoretical explanation of the superior
convergence of the cycle expansion of the Lyapunov exponent (Bai 2007 J.
Phys. A: Math. Theor. 40 8315). A numerical method based on the infinite
transfer matrix is applied to a one-dimensional Ising model with a random
field and a generalized Fibonacci sequence. It is found that, in the presence of
continuous distribution of a disorder or degenerated random matrix, the transfer
matrix approach is more efficient than the cycle expansion method.

PACS numbers: 02.30.−f, 02.50.−r, 05.45.−a

1. Introduction

Problems in a one-dimensional disorder system often reduce to determining the asymptotic
properties of a product of random matrices (PRM):

Mn = An · · · A2A1, as n → ∞, (1)

where Ak’s are random matrices from some specified distribution. For example, in a one-
dimensional random Ising model [1],

Ak =
[

eβ(J+hk) eβ(−J+hk)

eβ(−J−hk) eβ(J−hk)

]
, (2)

where hk is a random variable characterizing the external field, and β and J are two constants
which are related to the free energy by

F(β, J ) = − lim
n→∞

1

nβ
〈log Tr(Mn)〉, (3)
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where 〈 , 〉 denotes the ensemble average. Other well-known examples can be found in the
randomly coupled harmonic oscillators proposed by Dyson [2] or the quantum mechanics of
an electron in a one-dimensional disorder potential [3], where the density of state or the length
of localization can be derived from a properly defined PRM. In addition, PRM has also been
widely used to model discrete stochastic processes such as the evolution of population [4] and
investment strategy [5].

The most fundamental theorem on PRM was given by Furstenberg and Kesten [6], which
states that a definite exponential decay or growth can be expected for almost every realization
of Mn, i.e.

lim
n→∞

1

n
log‖Mn‖ → γ (4)

with unit probability. ‖.‖ denotes any matrix norm. The characteristic number γ is called
the Lyapunov exponent and can be often endowed with an important physical meaning. For
example, in the random Ising model, obviously we have F(β, J ) = −γ /β. Despite the
well-established theory and few exact results under a certain elaborate choice of the ensemble
of random matrices (e.g. [7–9]), for a general PRM the accurate calculation of γ presents a
considerable numerical challenge in practice. (For details, see [10, 11] and references therein.)
In 1992, Mainieri derived a cycle expansion of the Lyapunov exponent and demonstrated that it
converges exponentially with the cycle length [12, 13]. This novel method originates from the
periodic orbit theory in the study of chaotic dynamics [14, 15], and, with a recent improvement,
it even enjoys a super-exponential convergence when the positiveness of the random matrices
is assumed [16].

Here we study an alternative method for evaluateing the Lyapunov exponent, namely the
transfer matrix approach. The motivation is of twofold: on one hand, we aim at a theoretical
understanding of the superior convergence of cycle expansion and on the other hand, we desire
to design a practical algorithm for the statistical analysis of a PRM. The idea of the transfer
matrix is in fact quit natural. Consider a sequence of random vectors generated by a PRM,

{x0,M1x0,M2x0,M3x0,M4x0 . . .} ≡ {x0, x1, x2, x3, x4 . . .}. (5)

When n → ∞, it is well known that the direction of xn, i.e. θn = xn/|xn|, will establish an
equilibrium distribution ρ(θ), based on which one can derive γ (and other statistical properties)
of this PRM [11]. For numerical approximation of a dynamically generated equilibrium
distribution, a method suggested by Ulam is widely used due to its conceptual simplicity [17].
The key idea of the Ulam method is as follows. By dividing θ -space into N small parts, the
random recurrence θn → θn+1 can be represented by a N × N transfer matrix, of which the
eigenvector with the leading eigenvalue can be used as a good approximation of ρ(θ). For
example, this method was once used by Embree and Trefethen in their study of a generalized
Fibonacci sequence [18]. However, numerically Ulam’s method could be quite inefficient,
which is in particular the case when an ensemble of positive random matrices is assumed.
In this case, θn → θn+1 is given by the random iteration of some contraction mappings and
hence the invariant distribution is a highly irregular function, just as the fractal generated by
an iterated function system [19]. The irregularity of ρ(θ) implies that the ensemble average is
well defined only for regular functions (or physical observables) of θ . Therefore, in order to
achieve a better numerical efficiency, it is more reasonable to represent the random evolution
of θ by the iteration of the ensemble average of a set of regular functions, i.e. a transfer matrix
in the dual space of the probability density functions.

In this paper we shall show that, when only the positive 2 × 2 random matrices are
concerned, the above-described transfer matrix can readily be constructed. In terms of
the obtained transfer matrix, we can rewrite the cycle expansion of γ , and attribute its
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excellent convergence to the fact that this transfer matrix is a trace class operator in a
Hilbert space. Moreover, a numerical method based on this transfer matrix can be, under
a certain circumstance, more convenient and efficient than that based on the conventional
cycle expansion method. The remainder of this paper is organized as follows. In the following
section, we explicitly construct the transfer matrix associated with the product of one matrix
and show that it is a trace class operator. In section 3, the transfer matrix is applied to a PRM
and the related computational method is described in detail. The numerical efficiency of the
transfer matrix method is examined in section 4, which is followed by a brief discussion in
section 5.

2. Transfer matrix

In this section, we first define the transfer matrix associated with a positive 2×2 matrix. After
that, based on a qualitative analysis of a linear fractional transformation, this infinite matrix is
shown to be in the trace class and its trace and spectrum are determined accordingly.

Consider a 2 × 2 matrix A = {aij } and a two-dimensional vector x = (x1, x2)
T ,

aij , x1, x2 > 0. Define

|x| = x1 + x2 and z = x1 − x2

x1 + x2
. (6)

x′ = Ax induces
|x′|
|x| = â21z + â22 ≡ hA(z) and z′ = â11z + â12

â21z + â22
≡ fA(z), (7)

where Â ≡ {âij } is a similarity transformation of A that is defined as

Â = 1

2

[
a11 − a12 − a21 + a22, a11 + a12 − a21 − a22

a11 − a12 + a21 − a22, a11 + a12 + a21 + a22

]
. (8)

Obviously, we have

fA ◦ fB = fAB and (hA ◦ fB)hB = hAB. (9)

The dimensionless variable z can be regarded as a coordinate in θ -space mentioned in our
previous discussion. Define an infinite vector

φq(x) = |x|q(1, z, z2, . . .)T , (10)

and write the iteration of φq under the action of A as

φq(Ax) = Lq(A)φq(x). (11)

In this definition, q is a free parameter whose meaning will be clear in the following section.
Simple calculation shows that the elements of Lq(A) are given by the expansion

h
q

A(z)f k
A(z) = (â11z + â12)

k

(â21z + â22)k−q
=

∞∑
j=0

Lq(A)kj z
j (12)

k = 0, 1, . . . . We call Lq(A) the transfer matrix induced from A.
According to the definition of Lq(A), formally we have

Lq(B)Lq(A) = Lq(BA). (13)

However, this relation holds only when the following infinite sum
∞∑

s=0

Lq(B)ksLq(A)sj (14)
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converges for all k, j � 0. An important property of Lq(A), which we shall show later, is that
its elements are exponentially bounded, namely

|Lq(A)kj | � cηk+j (15)

(0 < η < 1). Hence equation (13) is a rigorously identity; in other words, A → Lq(A)

is a semigroup homomorphism. In fact, the exponential decay of matrix elements implies
that Lq(A) is a trace class operator in a Hilbert space, or Lq(A) ∈ J1. With many excellent
properties, trace class operators behave much like finite dimensional matrices. For example,
A1,A2 ∈ J1 implies A1A2 ∈ J1 and c1A1 + c2A2 ∈ J1. Their traces are well defined, which
are representation independent, and tr(A1A2) = tr(A2A1). Moreover, if A ∈ J1, then

det(1 − zA) = 1 − tr(A)z − 1
2 (tr(A2) − (tr(A))2)z2 + · · · (16)

is an entire analytical function of z (see e.g., [20] for more details).
Now let us prove the inequality given by equation (15). Note that fA(z) is the fractional

linear transformation associated with Â, which maps a circle to a circle in the complex plane.
Especially, the image of a disk Dr = {z, |z| � r} under the action of fA is a disk centered
at (fA(r) + fA(−r))/2 with radius |fA(r) − fA(−r)|/2 if r < |zp|, where zp = −â22/â21 is
the pole of fA(z). Since |zp| > 1, we have fA(D1) ⊆ Ds, s = max{|fA(1)|, |fA(−1)|} < 1.
From the viewpoint of continuity, there exists 0 < η < 1 that satisfies fA(D 1

η
) ⊆ Dη. Next,

to represent the matrix elements as a closed loop integration,

Lq(A)kj = 1

2π i

∮
C

h
q

A(z)f k
A(z)

zj

dz

z
, (17)

and denote the boundary of D 1
η

as C, we have

|Lq(A)kj | = 1

2π

∣∣∣∣
∮

|ηz|=1

h
q

A(z)f k
A(z)

zj

dz

z

∣∣∣∣ � cηk+j , (18)

where c = max
{∣∣hq

A(z)
∣∣ : |ηz| = 1

}
< ∞.

By using the integral representation of the matrix elements, we can readily calculate the
trace of Lq(A):

tr(Lq(A)) =
∞∑

k=0

Lq(A)kk = 1

2π i

∮
|z|=1

h
q

A(z)

z − fA(z)
dz = λ

q

0

1 − λ1/λ0
, (19)

where λ0 (λ1) is the larger(smaller) eigenvalue of A. From

det(1 − zLq(A)) = exp

[
−

∞∑
n=1

zn

n
tr

(
Ln

q(A)
)] = exp

[
−

∞∑
n=1

zn

n
tr(Lq(A

n))

]

= exp

[
−

∞∑
n=1

zn

n

λ
qn

0

1 − (λ1/λ0)n

]

= exp

[
−

∞∑
n=1

∞∑
k=0

(
zλ

q−k

0 λk
1

)n

n

]
= 
∞

k=0

(
1 − zλ

q−k

0 λk
1

)
, (20)

we find that the spectrum of Lq(A) consists of a geometric series

λ
q

0, λ
q−1
0 λ1, λ

q−2
0 λ2

1, λ
q−3
0 λ3

1, . . . . (21)

Moreover, when q = n is a non-negative integer, as

hn
A(z)f k

A(z) = (â11z + â12)
k(â21z + â22)

n−k (22)
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is an n-order polynomial of z if 0 � k � n,Ln(A) takes the form

Ln(A) =
⎡
⎣L(0)

n (A) | 0

− − − | − − −
∗ | L(1)

n (A)

⎤
⎦ . (23)

The upper left (n + 1) × (n + 1) block, i.e. L(0)
n (A), can be identified with the restriction of⊗n

A, i.e. the direct product of n replica of A, in the symmetric subspace, and it contributes
to the spectrum of Ln(A) the first n + 1 eigenvalues.

3. Product of random matrices

In this section, we apply the transfer matrix to a PRM. We first review the definition of the
generalized Lyapunov exponents and relate it to the leading eigenvalue of the transfer matrix.
Then we discuss some details of the numerical method based on the transfer matrix.

Suppose the random matrices are independently sampled from {T1, T2, . . . , Tm} with
preassigned probabilities: prob(Ti) = pi,

∑m
i=1 pi = 1. As in the last section, we assume

Ti’s are positive 2 × 2 matrices. To characterize the divergent behavior of the PRM, one can
introduce a generalized Lyapunov exponent τ(q), which is defined according to

〈|xn|q〉 ∼ exp[nτ(q)], (24)

when n → ∞, or

τ(q) = lim
n→∞

1

n
log(〈|xn|q〉), (25)

where x0, x1, x2, x3 . . . is a stochastic vector sequence generated from this PRM (see
equation (5)). As the value of τ(q) is independent of the specific choice of vector norm,
for the simplicity we fix |x| = x1 +x2 for positive vectors. The τ(q) curve is more informative
than the Lyapunov exponent γ . For example, γ can be derived from τ(q) according to

γ = ∂τ(q)

∂q

∣∣∣∣
q=0

, (26)

and, moreover,

∂2τ(q)

∂q2

∣∣∣∣
q=0

= lim
n→∞

1

n
[〈(log|xn|)2〉 − (〈log|xn|〉)2] ≡ χ, (27)

which characterizes the typical fluctuation of log|xn|.
Noting that

〈φq(x1)〉 =
m∑

i=1

piLq(Ti)φ
q(x0)

〈φq(x2)〉 =
m∑

i,j=1

pipjLq(TiTj )φ
q(x0) =

m∑
i,j=1

pipjLq(Ti)Lq(Tj )φ
q(x0)

=
[

m∑
i=1

piLq(Ti)

]2

φq(x0) (28)

· · ·

〈φq(xn)〉 =
[

m∑
i=1

piLq(Ti)

]n

φq(x0),

5
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we conclude that φq(xn) ∼ λn
qψ

∗ when n → ∞ and hence τ(q) = log λq , where λq and ψ∗

are the leading eigenvalue and its corresponding eigenvector of the transfer matrix

Lq = 〈Lq(T )〉 =
m∑

i=1

piLq(Ti). (29)

As the traces of Lq and its powers can exactly be calculated, e.g.

tr(Lq) =
∑

i

piλ
q

0(Ti)

1 − λ1(Ti)/λ0(Ti)
, (30)

tr
(
L2

q

) =
∑

i

[
piλ

q

0(Ti)
]2

1 − [λ1(Ti)/λ0(Ti)]2
+ 2

∑
i<j

pipjλ
q

0(TiTj )

1 − λ1(TiTj )/λ0(TiTj )
(31)

and so on, according to equation (16) we can expand det(1 − zLq) at z = 0 to any given order,
i.e.

det(1 − zLq) =
n∑

k=0

akz
k + o(zn) ≡ Pn(z; q) + o(zn). (32)

Then, from the smallest zero of Pn(z; q) we can obtain an estimation of λq . Along this
line, a cycle expansion of γ is thus derived (see [16] for detail). Because Lq is a trace class
operator, and hence det(1 − zLq) is an entire function of z, the error induced by replacing
det(1 − zLq) with Pn(z; q) is super-exponentially small when n → ∞. This explains the
superior convergence of the cycle expansion method.

In the following, we consider a more direct numerical approach: approximating the
transfer matrix Lq by its first (Nc + 1) × (Nc + 1) block. With the exponential decay of
the matrix elements of Lq , it is reasonable to expect a high numerical efficiency for this
straightforward method. We begin with the evaluation of the matrix elements. Consider a
general expansion

g(z)

(
c11z + c12

c21z + c22

)k

=
∞∑
i=0

w(k, j)zj . (33)

Obviously, g(z) = ∑
j w(0, j)zj and w(k, 0) = g(0)(c12/c22)

j . Noting that

(c21z + c22)g(z)

(
c11z + c12

c21z + c22

)k+1

= (c11z + c12)g(z)

(
c11z + c12

c21z + c22

)k

, (34)

the remaining elements can be calculated by the recursion:

w(k + 1, j + 1) = αw(k, j) + βw(k, j + 1) + δw(k + 1, j), (35)

where (α, β, δ) = (c11, c12,−c21)/c22.
The leading eigenvalue λq can be obtained by the standard power method, which also

yields the corresponding (right and left) eigenvectors,

Lq |q〉 = λq |q〉 and 〈q|Lq = λq〈q| (〈q|q〉 = 1). (36)

So the derivative of λq can be calculated according to

∂λq

∂q
= 〈q|∂Lq

∂q
|q〉. (37)

For instance, if q = 0, then λ0 = 1 and 〈0| = [1, 0, 0, . . .]. Assuming

|0〉 = [1, v1, v2, . . .]
T , (38)

6
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Table 1. Convergence of the truncated transfer matrix method for the statistics of a PRM related
to a random Ising chain. Nc denotes the cut-off dimension.

Nc γ χ

0 0.933 0.0
2 0.928 19 0.009 5
4 0.928 127 0.009 753
6 0.928 125 87 0.009 758
8 0.928 125 843 0.009 759 10
10 0.928 125 842 94 0.009 759 110 0
12 0.928 125 842 915 0.009 759 110 244
14 0.928 125 842 914 3 0.009 759 110 249 9
16 0.928 125 842 914 35 0.009 759 110 250 15

we have

γ = 〈0|∂L0

∂q
|0〉 = 〈log t̂22〉 +

∞∑
j=1

(−1)j+1

〈(
t̂21

t̂22

)j〉
vj

j
. (39)

To calculate χ , we need the second-order derivative of λq , which is a little bit lengthy:

∂2λq

∂q2
= 〈q|∂

2Lq

∂q2
|q〉 +

2

λq

〈q|∂Lq

∂q
D

∂Lq

∂q
|q〉, (40)

where

D =
∞∑
t=0

P
(
Lq

λq

)t

(41)

and P = I − |q〉〈q| is a projection operator. For an arbitrary right vector φ,Dφ can be
achieved from the fixed point of the iteration

ψ → P
(
Lq

λq

ψ + φ

)
. (42)

4. Applications

Our first example is the random Ising model (see equations (1)–(3)). For the sake of
simplicity, we fix β = 2J = 1 and consider two ensembles of the random field. The
first one is h = ±1/2 with equal probabilities. In this case, the cycle expansion works very
well. When det(1 − zLq) is expanded to z11, it yields more than 20 converging digits, i.e.
γ = 0.928 125 842 914 359 104 554 . . . . As a comparison, the results of the truncated transfer
matrix are summarized in table 1 as well, from which we can see that very precise estimation
of the statistics of a PRM can be achieved with a rather small truncated matrix1. As another
comparison, we also perform a Monte Carlo simulation of this disorder system. Based on K
realizations of a product of L random matrices, γ and its uncertainty can be estimated. The
result (table 2) indicates that the precision of the Monte Carlo simulation is approximately
given by (χ/LM)1/2, which is much poorer than the transfer matrix (and cycle expansion
[16]) method.

1 For the two examples we discussed in this section, by taking advantage of the symmetry of z → −z, the
dimensionality of truncated transfer matrices can be reduced to 1 + Nc/2.

7



J. Phys. A: Math. Theor. 42 (2009) 015003 Z-Q Bai

Table 2. The Lyapunov exponent obtained from Monte Carlo simulation; the number in parenthesis
denotes the standard uncertainty in the last two digits.

M = 102 M = 103 M = 104

L = 103 0.928 14(31) 0.928 18(10) 0.928 144(29)
L = 104 0.928 12(10) 0.928 089(32) 0.928 115(10)
L = 105 0.928 112(31) 0.928 133(10) 0.928 127 4(31)
L = 106 0.928 130(10 ) 0.928 127 0(31) 0.928 127 6(10)

Table 3. Discrete approximation of a PRM with continuous randomness. γk,0 is the Lyapunov
exponent of a product of 2k random matrices, calculated by the transfer matrix method.
γk,1 = 1

3 (4γk,0 − γk−1,0) and γk,2 = 1
15 (16γk,1 − γk−1,1).

k γk,0 γk,1 γk,2

1 0.928 125 842 914 35
2 0.951 574 940 612 31 0.959 391 306 511 63
3 0.957 288 115 946 76 0.959 192 507 724 90 0.959 179 254 472 45
4 0.958 707 458 515 03 0.959 180 572 704 46 0.959 179 777 036 43
5 0.959 061 742 327 94 0.959 179 836 932 24 0.959 179 787 880 76
6 0.959 150 278 912 20 0.959 179 791 106 95 0.959 179 788 051 94
7 0.959 172 410 912 09 0.959 179 788 245 38 0.959 179 788 054 61
8 0.959 177 943 777 95 0.959 179 788 066 58 0.959 179 788 054 66
9 0.959 179 326 986 04 0.959 179 788 055 40 0.959 179 788 054 66

Next, we consider a uniform probability distribution of h ∈ [−1, 1]. In this continuous
case, evaluation of tr

(
Ln

q

)
turns out to be an n-fold integration (see equations (30)–(31)),

which causes a severe limitation in computing the cycle expansion to high order. The transfer
matrix method, in contrast, works almost equally well with the infinite choices of the random
matrix. To simulate the continuous distribution of randomness, we assume

h = hi = 2i − 1 − m

m
, i = 1, 2, . . . , m (43)

with equal probabilities. When m runs from 2 to about 103, 14 converging digits of γ can
always be achieved with Nc = 30. Therefore, the increase of m results in only a linear
increase of the computational cost in the evaluation of matrix elements. The numerical results
at m = 2k are summarized in table 3; with an acceleration of convergence by Romberg’s
method, we obtain a very accurate estimation of the Lyapunov exponent. While for a Monte
Carlo simulation with M = 103 and L = 105, it gives γ = 0.959 176 ± 1.7 × 10−5.

Our second example is a generalized random Fibonacci sequence proposed by Embree
and Trefethen [18]: x0 = x1 = 1 and xn+1 = xn ± α2xn−1 for n � 1, where the sign before
α2 is equiprobably refreshed at each step. Although 〈xn〉 = x1 remains fixed, for a typical
realization of this random sequence we have xn ∼ enγ as n → ∞. It was found that, when
α > 1/2, γ shows an intriguing fractal-like dependence upon α [18]. On the other hand, when
α < 1/2, γ is an analytical function [21]:

γ = −1

2
α4 − 7

4
α8 − 29

3
α12 − 555

8
α16 − 2843

5
α20 − 30755

6
α24 − · · · . (44)

In the original derivation of this weak disorder expansion, it was hard to obtain the high order
coefficients due to the exponential increase of computational cost. Here we first adopt the idea
of the transfer matrix to give a more efficient derivation of this expansion.

8
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Figure 1. Coefficients of the weak disorder expansion of the Lyapunov exoponent for the random
sequence xn+1 = xn ± α2xn−1. The first 400 terms are plotted (hollow circles), which suggests
that γk ∼ 16k exp(−ck0.32).

Letting

uk = [xk − (1 − α)xk−1, (1 + α)xk−1 − xk]T , (45)

this model can be rewritten as uk+1 = T1uk or T2uk , where

T1 =
[ 1

2 + α 1
2

1
2

1
2 − α

]
and T2 =

[ 1
2

1
2 − α

1
2 + α 1

2

]
. (46)

If φ0 = [1, v1, v2, . . .]T is the right eigenvector of L0,L0φ0 = φ0 implies v2k+1 = 0 and

v2k = α2k

[
1 +

∞∑
j=1

(2k + 2j − 1)!

(2k − 1)!(2j)!
α2j v2j

]
(47)

for k > 0. Rewriting it as

v2k = α2k

∞∑
j=0

c(k, j)α4j , (48)

we have c(0, k) = δk0, c(k, 0) = 1 and

c(k, j) =
j∑

s=1

(2k + 2s − 1)!

(2k − 1)!(2s)!
c(s, j − s) (49)

for k, j > 0. All c(k, j)’s can be recursively obtained from the above relation and, according
to equation (39), we have

γ = −
∞∑

k=1

α2kv2k

2k
= −

∞∑
k=1

(
k∑

j=1

c(j, k − j)

2j

)
α4k ≡ −

∞∑
k=1

γkα
4k. (50)

With the help of Mathematica, several hundred terms of γk can thus exactly be calculated. The
divergence of γk as k → ∞ is plotted in figure 1, which suggests that

γk ∼ 16k exp(−c1k
c2) when k → ∞, (51)

9
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Table 4. Decay rates (σ = eγ ) and typical fluctuation exponents (χ ) of the random sequence
xn+1 = xn ± α2xn−1 for various α.

α2 σ χ

1/128 0.999 969 476 366 27 0.000 061 056 275 52
1/64 0.999 877 832 701 48 0.000 244 478 980 26
1/32 0.999 510 160 763 98 0.000 982 005 014 65
1/16 0.998 021 538 991 47 0.003 995 235 468 23
1/8 0.991 752 822 024 32 0.017 188 718 823 47
1/4 0.957 974 454 585 06 0.109 697 994 520 99

where c1 ≈ 4.968 and c2 ≈ 0.32. If this asymptotic behavior is qualitatively correct, then for
any positive integer n,

dnγ

dαn is well defined when α → 1/2 from below.
As in the previous example, here the transfer matrix method gives a rapidly convergent

estimation of the statistics of the generalized Fibonacci sequence when α < 1/2. All the
results listed in table 4, except for α = 1/2, converge at Nc < 20 and all the digits of σ agree
with those obtained by the weak disorder expansion. As a comparison, we note that a θ -space
transfer matrix of very large dimensionality (220) produces only six correct digits [18].

Finally, we consider the case of α = 1/2, where T2 is a degenerated matrix in more detail.
As tr(Lq(T2)) and hence tr(Lq) are no longer well defined, the cycle expansion must take its
origin form [12]. For the transfer matrix method, although its convergence is relatively slow
(14 stable digits of γ can be obtained when Nc = 100), it is still much efficient than the cycle
expansion method and the Monte Carlo simulation. Furthermore, we calculate the whole
spectrum of the finite approximation of L0 and focus on how they behave when α → 1/2.
The eigenvalues are organized in a descending order, namely

1 = λ(0) � λ(1) � λ(2) � λ(3) · · · , (52)

and a few of the leading eigenvalues are plotted in figure 2, from which we can see that they
approach a fixed point at 1/2 in a manner guided by

1

2

[
1 − √

1 − 4α2

1 +
√

1 − 4α2

]k

, (53)

k = 1, 2, . . . , i.e. the spectrum of 1
2L0(T1). Such aggregation of eigenvalues is a typical

manifestation of intermittency in dynamical systems [22], which slows down the mixing rate
and results in a power law decay of correlation. Fortunately, the situation in our case is less
severe: there is a finite gap between the leading eigenvalue of L0 and that of its degenerate
component, i.e. 1

2L0(T1). Therefore the leading eigenvector is well-defined and the exponential
convergence of the power method is retained in this marginal case.

5. Summary and discussion

In this paper, we have studied how to obtain the statistics of a product of random positive 2×2
matrices by employing the transfer matrix method. Unlike Ulam’s method which concerns
how an equilibrium distribution (of vector direction) is established under the action of random
matrices, the transfer matrix suggested here describes how the steady ensemble average of a
set of physical observables is reached. The transfer matrix is shown to be a trace class operator
in a Hilbert space, and this fact gives a theoretical understanding of the rapid convergence
of the cycle expansion method [16]. In addition, the property of trace class implies that this

10
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Figure 2. Spectrum of the transfer matrix (L0) for the random sequence xn+1 = xn ±α2xn−1. The
eigenvalues are calculated with Nc = 1000 and the five next-to-leading ones, i.e. λ(1), λ(2), . . . ,

λ(5), are plotted (hollow circles). For comparison, also plotted the corresponding eigenvalues of
1
2L0(T1)(solid lines).

infinite transfer matrix can be well approximated by a finite one. As demonstrated by two
numerical examples, to truncate the infinite transfer matrix into one of quite low dimension is
sufficient to generate a surprisingly high accurate estimation of the statistics of a PRM.

One of the most important discoveries in the study of chaotic dynamics is that global
quantities such as the Lyapunov exponent, the rate of correlation decay and the quantum levels
can efficiently be extracted from the whole spectrum of periodic orbits in a systematic manner,
i.e. cycle expansion or periodic orbit theory [15]. The validity of cycle expansion relies on the
trace class property of a certain transfer matrix. Therefore, a rigorous proof of this property
is of great importance for understanding of the global dynamics of nonlinear systems (e.g.
[23, 24]). As a typical stochastic dynamical system, it is interesting to ask whether the transfer
matrix theory developed here can be extended to PRM in high dimensional cases? The answer
is not immediate. For example, if A is an arbitrary 3 × 3 positive matrix, by analogy with the
2 × 2 case, we can define a transfer matrix Lq(A) according to

(â11z + â12w + â13)
k(â21z + â22w + â23)

l

(â31z + â32w + â33)k+l−q
=

∞∑
j,m=0

Lq(A)kl;jmzjwm, (54)

where Â = {âij } = T AT −1 with T being a fixed coordinates transformation. But, however, it
is hard to generalize the argument in section 2 to show that the above-defined infinite matrix is
a trace class operator. It is not clear whether this difficulty is merely a technique one that can
be circumvented by a more sophisticated mathematical method or an implication that a more
restrictive condition is required to guarantee the trace class property of the transfer matrix in
high dimensional cases. This question is worthy of further studies.
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[15] Cvitanović P, Artuso R, Mainieri R, Tanner G and Vattay G 2005 Chaos: Classical and Quantum (Copenhagen:

Niels Bohr Institute) ChaosBook.org
[16] Bai Z Q 2007 J. Phys. A: Math. Theor. 40 8315
[17] Ulam S 1960 A Collection of Mathematical Problems (New York: Interscience)
[18] Embree M and Trefethen L N 1999 Proc. R. Soc. A 455 2471
[19] Hutchinson J E 1981 Indiana Univ. Math. J 30 713
[20] Gohberg I, Goldberg S and Krupnik N 2000 Traces and determinants of linear operators Operator Theory:

Advances and Appplications vol 116 (Basel: Birkhäuser)
[21] Sire C and Krapivsky P L 2001 J. Phys. A: Math. Gen. 34 9065
[22] Kaufmann Z, Lustfeld H and Bene J 1996 Phys. Rev. E 53 1416
[23] Rugh H H 1992 Nonlinearity 5 1237
[24] Wirzba A 1999 Phys. Rep. 309 1

12

http://dx.doi.org/10.1103/PhysRev.92.1331
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1214/aoap/1177004975
http://dx.doi.org/10.1103/PhysRevE.54.R4516
http://dx.doi.org/10.1214/aoms/1177705909
http://dx.doi.org/10.1088/0305-4470/27/10/019
http://dx.doi.org/10.1090/S0002-9947-08-04316-X
http://dx.doi.org/10.1103/PhysRevLett.68.1965
http://dx.doi.org/10.1063/1.165903
http://dx.doi.org/10.1088/0951-7715/3/2/005
file:ChaosBook.org
http://dx.doi.org/10.1088/1751-8113/40/29/008
http://dx.doi.org/10.1098/rspa.1999.0412
http://dx.doi.org/10.1512/iumj.1981.30.30055
http://dx.doi.org/10.1088/0305-4470/34/42/322
http://dx.doi.org/10.1103/PhysRevE.53.1416
http://dx.doi.org/10.1088/0951-7715/5/6/003
http://dx.doi.org/10.1016/S0370-1573(98)00036-2

	1. Introduction
	2. Transfer matrix
	3. Product of random matrices
	4. Applications
	5. Summary and discussion
	Acknowledgments
	References

